Quick Start
Classify your first file in under 5 minutes
1
Install Veriafy
If you haven't already, install Veriafy using the installation script:
curl -fsSL https://get.veriafy.com/install.sh | sh2
Initialize Veriafy
Set up your local Veriafy environment:
veriafy initThis creates a ~/.veriafy directory with configuration and model storage.
3
Download a Model
Pull a classification model from the marketplace:
veriafy pull veriafy/nsfw-classifierThis downloads the official NSFW classifier model (~150MB).
4
Classify a File
Run classification on any image — Veriafy never accesses the actual content:
veriafy classify image.jpg --model veriafy/nsfw-classifierExample output:
{
"vector_id": "v_8f3a2b1c4d5e6f7a",
"file_type": "image",
"extractor": "pdq_clip",
"model": "veriafy/nsfw-classifier",
"categories": {
"safe": 0.98,
"suggestive": 0.02,
"explicit": 0.00
},
"action": "allow",
"confidence": 0.98,
"processing_time_ms": 4.2
}
5
Use the Python SDK
Integrate Veriafy into your Python applications:
pip install veriafyExample code:
from veriafy import Veriafy
# Initialize client (local mode, no API key needed)
client = Veriafy()
# Classify a file
result = client.classify("document.pdf", model="veriafy/fraud-detection")
print(f"Vector ID: {result.vector_id}")
print(f"Categories: {result.categories}")
print(f"Confidence: {result.confidence}")
print(f"Action: {result.action}") # 'allow', 'flag', or 'block'
# Batch processing
results = client.classify_batch(
files=["doc1.pdf", "doc2.pdf", "doc3.pdf"],
model="veriafy/fraud-detection"
)
for r in results:
print(f"{r.file}: {r.action}")What You've Learned
- ✓How to install and initialize Veriafy
- ✓How to download models from the marketplace
- ✓How to classify files using the CLI
- ✓How to use the Python SDK for integration