Back to blog
Technology

GPU Acceleration: 10x Faster Classification

New GPU support enables real-time classification at scale. Learn how to configure GPU acceleration for your deployment.

Engineering TeamOctober 20, 20247 min read

Veriafy now supports GPU acceleration for dramatically faster classification. Here's everything you need to know.

Performance Improvements

With GPU acceleration enabled:

OperationCPUGPUSpeedup
Image classification45ms4ms11x
Document classification80ms12ms7x
Batch (100 images)4.5s180ms25x

Supported GPUs

Veriafy supports:

  • **NVIDIA**: RTX 30/40 series, A100, H100
  • **AMD**: RX 6000/7000 series (ROCm)
  • **Apple**: M1/M2/M3 (Metal)

Configuration

Docker

docker run -d --gpus all -p 8080:8080 \
  -e VERIAFY_GPU=1 \
  veriafy/veriafy:latest-gpu

Python SDK

client = Veriafy(gpu=True) result = client.classify("image.jpg", model="veriafy/nsfw-classifier") ```

CLI

veriafy classify image.jpg --gpu

Batch Processing

GPU acceleration shines with batch processing:

# Process 1000 images in seconds
results = client.classify_batch(
    files=image_paths,
    model="veriafy/nsfw-classifier",
    batch_size=64  # Optimal for most GPUs
)

Memory Requirements

GPU VRAMRecommended Batch Size
4 GB16
8 GB32
16 GB64
24 GB+128

Cloud Deployment

For cloud deployments, we recommend:

  • **AWS**: p3.2xlarge or g4dn.xlarge
  • **GCP**: n1-standard-8 + T4
  • **Azure**: NC6s_v3

See our [GPU deployment guide](/docs/advanced/gpu) for detailed instructions.

Share this article