Veriafy now supports GPU acceleration for dramatically faster classification. Here's everything you need to know.
Performance Improvements
With GPU acceleration enabled:
| Operation | CPU | GPU | Speedup |
|---|---|---|---|
| Image classification | 45ms | 4ms | 11x |
| Document classification | 80ms | 12ms | 7x |
| Batch (100 images) | 4.5s | 180ms | 25x |
Supported GPUs
Veriafy supports:
- •**NVIDIA**: RTX 30/40 series, A100, H100
- •**AMD**: RX 6000/7000 series (ROCm)
- •**Apple**: M1/M2/M3 (Metal)
Configuration
Docker
docker run -d --gpus all -p 8080:8080 \ -e VERIAFY_GPU=1 \ veriafy/veriafy:latest-gpu
Python SDK
client = Veriafy(gpu=True) result = client.classify("image.jpg", model="veriafy/nsfw-classifier") ```
CLI
veriafy classify image.jpg --gpu
Batch Processing
GPU acceleration shines with batch processing:
# Process 1000 images in seconds
results = client.classify_batch(
files=image_paths,
model="veriafy/nsfw-classifier",
batch_size=64 # Optimal for most GPUs
)Memory Requirements
| GPU VRAM | Recommended Batch Size |
|---|---|
| 4 GB | 16 |
| 8 GB | 32 |
| 16 GB | 64 |
| 24 GB+ | 128 |
Cloud Deployment
For cloud deployments, we recommend:
- •**AWS**: p3.2xlarge or g4dn.xlarge
- •**GCP**: n1-standard-8 + T4
- •**Azure**: NC6s_v3
See our [GPU deployment guide](/docs/advanced/gpu) for detailed instructions.